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The impulsive linear spin-down of a stably stratified Boussinesq fluid in a circular 
cylinder is analyzed under the assumption that the Prandtl number P = V / K  is 
small (v is the kinematic viscosity, K the thermal diffusivity). The nature of the 
spin-down process depends on the ordering of P with respect to the Ekman 
number E. For P < Et,  the spin-down is similar to that of an unstratified fluid. 
For P > El,  the process is similar to that for a stratified fluid with P = O( 1). The 
distinctive case P = O(E3) is analyzed in detail. For that case it is shown that for 
N 3 a, the asymptotic state of rigid rotation is reached in a time of the order of 
( N / Q ) 2 7 ,  where N is the Brunt-Vaisala frequency, Q the angular velocity and 
T the thermal diffusion time for the cylinder. We calculate spin-down times for 
parameter values corresponding to the solar interior. For an angular velocity 
as large as that suggested by Dicke (5.74 x sec-l) the spin-down time is less 
than the age of the sun. For an angular velocity comparable to the surface value 
(2.87 x 10-6sec-1), the spin-down time is greater than the age of the sun. These 
results suggest that a uniformly and rapidly rotating solar interior is not possible, 
but we cannot rule out a state of non-uniform rotation producing an oblateness as 
large as that measured by Dicke & Goldenberg (1967). 

1. Introduction 
An important problem in the theory of rotating fluids is the linear spin-down 

problem, in which one analyzes the motions induced in an enclosed, uniformly 
rotating fluid by a change in angular velocity of the container. For an unstratified 
fluid, the basic parameter is the Ekman number (assumed small), 

E = v/(L2Q), (1) 

where v is the kinematic viscosity, L a characteristic container dimension and Q 
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the basic angular velocity. As Greenspan & Howard (1963) showed, the time 
scale for the interior to reach a state of uniform rotation is 

to = Q-'E-&, (2) 

which is much smaller than the viscous diffusion time L2/v  = to E-4. For a strati- 
fied fluid, the Ekman number is still important, and in addition, there is the 
stratification number 

where N is the Brunt-Vaisala frequency. The spin-down of a stratified fluid has 
been analyzed for a laboratory flow in a circular cylinder by Holton (1965), Walin 
(1969) and Sakurai (1969u, b) and for a geophysical flow in a sphere by Clark, 
Clark, Thomas & Lee (1971). The results are all qualitatively similar: on the time 
scale to, a quasi-steady state is reached in which the interior angular velocity is 
non-uniform in space. The final uniform rotation is reached only on the longer 
time scale L2/v. When the stratification is strong (8 l) ,  the spin-down is con- 
fined to  layers of thickness L/S) adjacent to the top and bottom of the cylinder, 
and the time required to reach the quasi-steady state is of the order of toS-&. 

(3) s = (N/Q)2 ,  

In  all of the above work, however, the Prandtl number 

P = V / K ,  (4) 

where K is the thermal diffusivity, is of the order of unity. No one has yet explored 
the spin-down problem for the case with very small Prandtl number in spite of its 
astronomical importance. Because of efficient radiative transfer, the Prandtl 
number in stellar interiors is almost always small. In particular, this is the case 
for the solar interior. 

In  this paper, we discuss the laboratory spin-down problem for a Boussinesq 
fluid with very small Prandtl number. The fluid in a circular cylinder is initially 
in uniform rotation about the vertical axis of symmetry. The temperature near 
the top is held higher than that near the bottom to establish a stable stratification. 
Then the angular velocity of the cylinder is changed abruptly by a slight amount, 
while the horizontal walls of the cylinder are kept at their original temperatures 
and the vertical wall is kept at  the original temperature or is thermally insulated. 
Our problem is to investigate the response of the fluid to this change. 

As will be discussed in detail in $ 3 ,  the nature of the spin-down process depends 
on the ordering of the Prandtl number with respect to the Ekman number. .For 

P = O(EU), (5) 

where a > 0, the spin-down process is divided into three different categories. If 
u < 8, the thermal diffusion time 

L 2 / ~  = toO(Ea-a) (6) 

is much greater than the time to, and the process is qualitatively similar to that 
in the case with P = O( 1) .  For a > 4, the diffusion time is much shorter than the 
time to, and the temperature field is determined entirely by the thermal boundary 
conditions, with the consequence that the buoyancy force is unimportant in the 
spin-down process. Thus this case is similar to that of a homogeneous fluid. 
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Finally, the case with a = 4 gives us a qualitatively new spin-down process which 
is analyzed in detail in the present paper. 

2. Basic equations 
The equations used here are those of the Boussinesq approximation, linearized 

about a basic state of uniform rotation and constant temperature gradient (see, 
for example, Barcilon & Pedlosky 1967a). The angular velocity S l  and the 
temperature gradient are in the positive Z direction and the gravity g is in the 
negative 2 direction. The container is a circular cylinder of radius ro and height 
2Hr0. We assume an axisymmetric motion and use a rotating cylindrical co- 
ordinate system ( r ,  6,Z). The equations are made dimensionless by taking ro 
for the length scale, the homogeneous fluid spin-down time to = E-Kt-1 for the 
time scale, ro fi for the azimuthal velocity scale, Etr, !2 for the meridional velocity 
scale and r,, Q2/(ag) for the temperature scale, where a is the coefficient of thermal 
expansion. Finally, the Prandtl number is expressed as follows with respect to 
the Ekman number: 

where u is a constant of order unity. The dimensionless linearized equations 

(7) P = cE“, 

are then 

and 

where 

Here T is the perturbation temperature, and @ is the stream function of the 
meridional current q, with q = - curl ($e&. In  the above equation 

where N is the Brunt-Viiisala frequency. 

equilibrium until a certain instant of time : 
The initial conditions are the statement that the fluid is in basic rotating 

$ = q e = T = O ,  for - H < Z < H  ( O < r < l , t < O ) .  (13) 

The boundary conditions for t > 0 for the two cases that we consider are given 
below. 

(i) Prescribed side-wall temperature: 

$ = a@laZ = T = 0,  qe = wr, for Z = ? H (0 < r < l), (14) 

$ = a$pr = T = 0, qe = w, for r = 1 ( - H  < Z < H ) .  (15) 
48-2 
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(ii) Thermally insulated side wall: 

$ = a $ p Z = T = o ,  q e = w r ,  for Z = i H  ( O , < r < l ) ,  (16) 

$ = a$/% = aT/ar = 0, qe = w, for r = 1 ( - H  < Z < H ) .  (17 )  

3. Ordering of the Prandtl number 
Before going ahead directly with the case of most interest, let us determine how 

the spin-down process depends on the ordering of the Prandtl number with 
respect to the Ekman number (i.e. the choice of exponent a in (7)).  In the 
following, we will often have occasion to compare the present results with earlier 
work carried out for order unity Prandtl number. For brevity, we refer to the 
earlier work as the case P = O(1). 

For a < $, the interior equations (obtained by letting E -+ 0 in (8)-( 10)) are 

2aqe/aZ = aT/ar, (18) 

aqs/at = - 2 a$/aZ, (19) 

and aT/& = (X/r)  a(r$)/ar. (20) 

The boundary conditions on the interior flow, which can be obtained by a 
detailed boundary-layer analysis similar to the analysis in appendix A, are as 
follows: 

f 2$+qB = wr,  on Z = & H for cases (i) and (ii), (21) 

T = 0 on r = 1 for the case (i), (22 a )  

and $ = 0 on r = 1 forthe case (ii). (22b) 

We may compare the problem defined by (18)-(22) with Sakurai’s (1969a, b )  
results for the case P = O(1). For case (ii), Sakurai’s equations and boundary 
conditions are identical with the present ones. For case (i), the only difference is 
the side-wall boundary condition. The condition obtained by Sakurai ( 1 9 6 9 ~ )  is 
equivalent to 

Thus for a < 4, the spin-down process for case (i) is similar to (but not identical 
with) that for P = O( l), and for case (ii) is identical with that for P = O( 1). 

T + 23(PX)$ $ = 0. (23) 

For a > 4, the interior equations are (18), (19) and 

AT = 0. (24) 

The boundary conditions on these, which again are derived by a boundary-layer 
analysis, are 

T 2$+q ,  = wr and T = 0,  on Z = & H for cases (i) and (ii), (25) 

and T = 0 on r = 1 for case (i), 

aT/ar = 0 on r = 1 for case (ii). (26 b)  

The solution of (24) subject to the conditions (25) and (26) is T = 0. Then (18), 
(19) and the remaining boundary conditions reduce to those for a homogeneous 
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fluid. Thus for a > 4, the spin-down process is identical to that for a homogeneous 
fluid. 

Since the cases a < 4 and a > 4 give us nothing new, while the case with a = + 
is distinguished because of the fact that the thermal diffusion term AT is of the 
same order of magnitude as the other interior terms, we hereafter restrict our- 
selves to the case a = +. 

The basic equations for the interior inviscid flow, for a = 4 are 

and 

The boundary conditions for the interior flow are derived in appendix A by a 
boundary-layer analysis of the full equations (see also Barcilon & Pedlosky 
1967 b). The resulting conditions on the interior flow are 

T 2 @ + q ,  = or ,  T = 0, on Z = 2 H for cases (i) and (ii), (30) 

T = 0 on r =  1 for case (i), (31 a )  

aT/ar+aS@ = 0 on r = 1 for case (ii). (31b) 

The first of equations (30)  describes the pumping of the meridional current by 
the disturbance of the geostrophic balance in the Ekman layer. From the second 
of (30), we see that there is no horizontal thermal boundary layer, in contrast with 
the case P = O(1). The condition (31a)  again corresponds to the absence of a 
thermal boundary layer (in lowest order), while (31 6 )  is essentially the condition 
that the total energy flux (convective plus conductive) vanish a t  the side wall. 

The initial conditions are 

T = qo = 0 for t = 0. (32) 

As discussed by Greenspan & Howard (1963), the initial condition on @ must be 
dropped since meridional currents of order unity are built up during the establish- 
ment of the Ekman layer (within the time scale l2-l). 

It is of interest that the equations (27)-(29), with the boundary conditions (30) 
and (31), have an energy-dissipation integral for both the cases (i) and (ii): 

= -/I/ (grad T ) 2  d V - jJz=aSn(qo - ~ r ) ~  ds - Sa(q, - or)2ds. (33) 
V 

Here 'v is the total volume of the cylinder. The important conclusions derived 
from the above are: (a)  the solution of the initial-value problem for the interior 
flow equations is unique; ( b )  the asymptotic state to which our interior flow 
approaches is rigid-body rotation with the new angular velocity of the container 
(qs E or ,  T = 0 ) ;  (c) the negative-definite driving terms on the right-hand side 
are associated with thermal relaxation throughout the volume (the (grad T ) 2  term) 
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and the Ekman layers (the (qe - wr)2 terms), but not the side-wall layers. Thus the 
side-wall layers are passive in the spin-down process. Since the quantities in (33) 
are all of order unity with respect to the Ekman number, the time scale for 
approaching the asymptotic state is of order unity (that is, of the order of the 
homogeneous spin-down time to = !2-1E-Ji). The above energy integral is easily 
extended to the case of an arbitrary axisymmetric container with arbitrary time 
variation of the wall velocity (appendix B). This generalization of the energy 
integral shows that the asymptotic state is rigid-body rotation for any axisym- 
metric container. This is in strong contrast to the case P = O(l) ,  where the 
asymptotic state is one of non-uniform rotation. In  this respect, the present case 
is more nearly like that of a homogeneous fluid. In  other respects, however, our 
situation is definitely different from that of a homogeneous fluid. For example, 
the transient spin-down is non-uniform in Z -there is no Taylor-Proudman 
column as in the homogeneous case, as is evident from equations (27)  and (28) .  

4. Solution for the interior flow 
Case (i) : prescribed side-wall temperature 

We seek a solution in the following form: 

and 

where Jo and J1 are Bessel functions and w, is the nth positive zero of Jo. Pro- 
perties of such expansions are discussed briefly in appendix C. The series for T 
may be differentiated termwise twice, and the series for @ may be differentiated 
termwise once with respect to r .  Substitution of the series into equations 
(27)-(29) yields the following set of equations: 

and 

The initial conditions are 

The boundary conditions on 2 = _ + H  are readily applied with the aid of the 

Tn(Z, 0 )  = q,(Z, 0 )  = 0. (40) 

following expansion : m 

r = C PnJl(unT)> (41) 

(42) 

n=l 

4 - where - 
4 J1(un) * 
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These conditions are 

(43) 
- + 2$, + q ,  = p,w, T, = 0, on 2 = & H .  

The above initial-value problem can be solved by the Laplace transform in 
time. We denote the transform variable by T ,  the transforms of qe, $ and T by Q ,  
YP and respectively, and we write D = d/dZ. Then the transformed equations 
and boundary conditions are 

ZDQ, = - w,Z,,, (44) 
TQ, = - 2DY,, (45) 

and WTY, - (D2 - w:) Y, = CTSW,Y~, (46) 
with 7 2Yn+Q, = ,u,w/T, Y, = 0, on Z = k H .  (47) 

The solut,ion of (44)-(47) is straightforward. The result is 

(48) 

(49) 

and 

and 

with 

coth (a, H )  coth (P, H )  - a: D, = - t-7- 
P n  a:P: ’ 

The functions Q,, F, and Y, are even functions of a, and P,, and are symmetric 
with respect to the exchange of a, and P,. It follows, therefore, that these 
functions do not have branch points as functions of 7, even though a, andp, have. 
Another point to be noted is that, although a, = P, gives us a root of the denomi- 
nator D, for which the real part of T is positive, the numerators for Q,, 7, and ‘I?, 
also vanish which shows that such points are removable singularities. The only 
remaining singularities are poles at  T = 0 and in the left half plane of 7.  It is easy 
to verify that the solutions satisfy the initial conditions (40). The asymptotic 
state for t --f co also may be verified. The residue of (48) at T = 0 is pnw (by (51) 
to (53)), which, by (41) and (42) leads immediately to the fact that the asymptotic 
state is one of rigid-body rotation. Similar estimates lead to the conclusions ~ h a h  
T and $ tend to zero in the asymptotic state. 

Since the initial and the asymptotic states are described, the remaining 
problem is the description of the time variation connecting these two limiting 
stat.es. As a single quantity which describes the spin-down, we investigate the 
total angular momentum $, normalized to unity for the final state of the rigid- 
body rota,tion. The Laplace transform of $is as follows: 
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Q 

32 I; 11~:. 

It is easy to prove that the above is equal to  unity, by Parseval's theorem applied 
to the series (4l), and this verifies that the asymptotic state is rigid-body rotation. 

n=l 

Case (ii) : thermally insulated side wall 
For the case of a thermally insulated side wall, the appropriate sets of functions 
to use are (1, Jo(Ynr)) and { Jl(ynr)), where yn is the nth positive root of J1. Each 
of these sets is complete and orthogonal with respect to r  on [0,1]  (see appendix C ) .  
We seek a solution of the following form : 

and 

Since qs and @ do not vanish on r = 1, while the functions Jl(ynr) do vanish 
there, the convergence of the series (57) and (58) is poor (like l /n),  and theseseries 
may not be differentiated termwise with respect to r.  The series (56) for T ,  on the 
other hand, may be differentiated termwise once (see appendix C). Substitution 
of the above into (27 )  and ( 2 8 )  yields the following two equations: 

'(%n/az) = - Yn Tn, (59) 

and aan/at = - 2(a21r,/az). (60)  

The third equation is rewritten as 

The quantity on the right-hand side has the expansion 

Since uS@+aT/ar vanishes on r = 1 (by the boundary condition (31b)), the 
series (62 )  may be differentiated termwise with respect to r .  Substitution of the 
above into (61) yields 

(63)  aaTo/at = a2To/az2 

and aaTn/at-a2Tn/aZ2 = Y,(uS@~-~,T,) (n 2 1). (64) 

Equations (59), (60), (63) and (64) are to be solved under the following initial and 

(65)  
boundary conditions : 

and T 211.,+qn = p n q  Tn = 0 on Z = + H ,  (66)  

Tn(z, 0) = 0, qn(z,  0) = 0, 
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where 

with 

n=l 
(67) 

It is easily shown that To = 0. The form of the remaining problem is identical 
t o  that of case (i). Thus the Laplace transforms of the solutions are given by (48) 
through (53) with the following changes: 

wn -+ Yn, Pn + Pn. 
The angular momentum is 

Similar considerations as in case (i) show that the solution satisfies the initial 
condition (32), and that the asymptotic state as t -+m is one of rigid-body 
rotation (qo = w)  with vanishing values of $ and T, and with J --f 1. 

We show now that a closed form expression may be obtained for the Laplace 
transform of the azimuthal velocity on the side wall (r-+ 1). Consider the series 

for Q. We have m 

cosh (anZ) 
with Qn = E ( a n s i n h  (anH)-pnsinh(/3,H) 
For large n, we have 

and 

(73) 

(75) 

(77) 
w cosh [&Z(cr57)4] 

7 { 2 ( ~ / d ) 3  sinh [&H(crjS'~)4] + cosh [&H(cr#.r)4]} ' 
where 2'(2,7) = 

W 

Finally, we have 2 pnJl(ynr) = r + 1 as r -+ 1, 
n=l 

and (79) 

The last limit above comes from the fact that pnO(y;l) = O(y;%) implying the 
uniform convergence, and hence the continuity of the sum at the point r = 1. 
Thus we get the following result for the Laplace transform of the side-wall 
azimuthal velocity: 

(80) Q(1, Z,7) = P(Z,  7). 



762 T.  Sakurai, A. Clark and P. A.  Clark 

It is interesting to note that the above side-wall distribution of the azimuthal 
velocity can be obtained more directly. If we let q6( l ,  Z, t )  = f(Z, t ) ,  then the 
following equation is obtained from (27), (28) and (31 b ) :  

If we let Z -+ k H ,  and use (30)) along with the fact that q6 and 4 are continuous, 
then we obtain the following end-point conditions on (81) : 

f f (4 /gX)  afpz = O, at Z = ~f: H .  (83) 

It is easily shown that the Laplace transform of the above f is just P(Z,  7). It is 
worth noting that this kind of manipulation of equations and boundary conditions 
near the corners must be done with care, since some quantities, aT/& for example, 
are not continuous there. 

5. Results and discussion 
The important quantities in the Laplace inversion are the singularities of the 

Laplace transforms (48)-(50). In  this case the singularities consist of a pole at  
7 = 0, which gives the asymptotic state with qe = wr, @ = 0 and T = 0, and 
poles in the left half 7 plane, which give information about the transient approach 
to the asymptotic state. 

The poles in the left half plane are the zeros of D,. If we let 

7 = - A 2  /FHL (84) 

for h real and positive, r = ~ V S H ,  ( 8 5 )  

then the equation 0, = 0 can be put into the following form: 

where 

and 

In any interval (m - 1)  7~ < X ,  < mn the function (cot X,)/X, varies from + 00 
to - 00, while the right-hand side of (86) is bounded. Thus there is a root A,, in 
every such interval. Since this is true for each n (i.e. for each term in the radial 
expansion), there are infinitely many A,, in the interval (m- 1)n < X ,  < mn. 
Since X, = h for large n, we have the result that the roots A,, (for each fixed m) 
have a limit point in the interval (m - 1) n < h < mn. As simple measures of these 
roots, we may take the limiting values 

/3, = lim A,,. 
n-+m 
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From (86), one can show that p, is the mth root of 

tanp  = r/p. (92) 

The smallest root of this equation is a measure of the spin-down time, since the 
solution behaves like exp ( - t/t,), where 

t, = I?H/B: = to(I'//3:). (93) 

For weak stratification (I' -+ 0) it follows from (92) that -+ I3 so that t ,  -+ to, 
which is the known spin-down time for a homogeneous fluid. For strong stratifica- 
tion (I' -+ co), PI -+ +n so that t ,  -+ (41'/n2) to, which becomes indefinitely large 
with I?. The dimensional spin-down time f, in this limit (I' -+ co) is particularly 

(94) 
simple: f, = !k1E-*t, = S ( h 2 / n 2 ~ ) .  

Thus the spin-down time for strong stratification is simply the thermal diffusion 
time increased by the factor of the stratification number. 

The above analysis is based on the identification of PI as representative of the 
first root. A more accurate treatment is also of interest. We have calculated the 
exact first zero of D, from equation (86) for u = 1 and H = 1 for a large number of 
X values, both for fixed temperature and insulated (un + Y,) side walls. The 
results are shown in figure 1, where logt, is plotted as a function of logs. For 
comparison, the limit-point root obtained from equation (92) is also plotted. The 
three roots are nearly the same for small stratification. For larger S, the limit- 
point root gives a value too large, and the exact roots show that the spin-down 
process is slower for insulated side walls. This is in complete qualitative agreement 

0 1 .o 2.0 3.0 

Log,,S 

FIGURE 1. Spin-down time t, as a function of the stratification parameter S for fixed side-wall 
temperature (i), for an insulated side wall (ii), and approximate limit-point value (iii). 
The other parameter values are H = 1 and u = 1. 
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We consider now a more elaborate calculation -namely the calculation of the 
total angular momentum J as a function of time. Although the method to be 
used will work for a wide range of parameter values, we have chosen S = 4, c = 1 
and H = 1 since there are some simplifications in this case. We present numerical 
results for both boundary conditions but since the calculations are very similar 
in the two cases, we give the details only for the case of fixed side-wall temperature. 

For our choice of parameters, the Laplace transform (55)  becomes 

From the residue theorem and previous considerations on the roots of D, = 0,  
we derive the following expression for J( t )  : 

m 

where (97) 

( 98) 
1 

with Cnm = 32(Anrn+u%) / Ahn@: ( A$,+$W; [ - +""̂ ...I). sin2Anm A,, 

For large n (99) 

where j3, is the mth root of (92) with I' = 1. The convergence in the series (97) is 
thus like n-4. We can improve the convergence by adding and subtracting 
asymptotic expressions to the terms in (97) to get 

where 
32exp(-/?zt) En, = Cn,exp ( -  A2,,t) - 

1+*p: * 

One can show that the terms En, decrease like n+, so that only a very few terms 
need to be kept. Once the Lm's are calculated, J(t)  may be calculated from (96). 
The roots j3, increase rapidly with m so that, again, only a few terms are needed 
(unless t is very small). The calculations are similar for the case of an insulated 
side wall. The principal difference is that the series for L,, corresponding to (97), 
converges only like n-2. The transformations corresponding to (99)-( 101) give 
a series with n-4 convergence. Figure 2 shows a plot of J(t)  for both boundary 
conditions. Again we see that the spin-down is slower for the insulated wall, 
although the difference is not nearly so great as in the P = O(1) case (Sakurai 
1 9 6 9 ~ )  b) .  

As another example of the behaviour of the flow field, we consider the interior 
azimuthal velocity at r = 1 for the case of an insulated side wall. The Laplace 
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transform of this function is given by (77) .  The inversion is straight forward, and 

where Pn is the nth root of equation (92), and 

y = Z / H ,  t " =  t / ( r H ) .  

I I I 

0.8 

0.6 

J 

0.4 

0.2 

0 1 .o 2.0 3.0 

t 

FIQURE 2. Angular momentum J as a function of time t for fixed side-wall temperature 
(i), and insulated side wall (ii). The parameter values are S = 4, H = 1 and u = 1. 

It is interesting to note that the time-decay exponents are simply those corre- 
sponding to the limit-point roots. In  the limit F --f 00, the formula (102) becomes 

(104) 

Figure 3 shows q,Jo as a function of y, for various values off, for I' = 1, 10, 100 
and co. The graphs show clearly the way in which the spin-down process becomes 
more non-uniform in height as the stratification increases. These results are 
similar to those obtained by Sakurai (1970) for the case P = O(1). 

Now we consider briefly the physical significance of the ordering P = O(E4) on 
which the present analysis is based. One characteristic of this ordering (as 
discussed in $ 1  above) is the fact that the thermal diffusion time (D/K) is com- 
parable to the spin-down time to = Q-lE-4. Further insight is obtained from a 
consideration of circulation velocities. From the Ekman layer analysis, one 
obtains a dimensional circulation velocity V, N oLQE4, where o is the Rossby 
number as in the above analysis. Another characteristic circulation velocity may 
be obtained from an order-of-magnitude analysis of the interior equations, 
including the effects of thermal diffusion. One finds an interior circulation 
velocity V, N WK(LS)-~, provided that S 2 1. (This velocity is entirely analogous 
to the Eddington-Sweet velocity in the theory of meridional circulations in stars.) 
These two velocities are comparable if P N S-lE4, in particular if S = O(1) and 

m 

qe/w = 1-(2/m) C ( -  l)nf1(n-&)-1~os[(n-~)mg]exp[-(n-&)2m2f]. 
n=l 
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P = O(E4). Thus the case P = O(E*) corresponds to the situation in which the 
circulations allowed by the interior dynamics are comparable with those pro- 
duced by the Ekman pumping mechanism. 
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FIGURE 3. Interior azimuthal velocity (qe/w) on the side wall as a function of height y for 
various stratification parameters I’ and various times 8. The centre plane of the cylinder is 
y = 0 and the top is y = 1. The side wall is insulated. 

6. Solar spin-down problem 
The suggestion by Dicke (1964) and Roxburgh (1964) that the iiiterior of the 

sun may be rapidly rotating has led to considerable controversy. The possible 
importance of Ekman spin-down was first pointed out by Howard, Moore & 
Spiegel (1967). They estimated that spin-down would destroy the differential 
rotation proposed by Dicke in a time of the order of lo9 years, close enough to the 
age of the sun to indicate that a quantitative treatment is necessary for a decisive 
answer. An extensive review of the whole solar rotation problem has been given 
recently by Dicke (1970). The present authors’ points of view have been given in 
detail elsewhere (Sakurai 1970; Clark, Thomas & Clark 1969). Our purpose here 
is to draw what further conclusions we can from the present work. 

Consider first the parameter range most relevant for the solar spin-down 
problem,P = O(E4)andS 9 1 (but8  = O(l)withrespecttoE).Then& < V’and 
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a question of compatibility arises. By a lengthy but straightforward analysis of 
the solution given above, one may show the following. Apart from initial non- 
uniformities of short duration, the circulation velocity is of the order of V,. 
Stratification reduces the flow through the Ekman layer to the point where it is 
compatible with the interior flow. A detailed discussion of these points will be 
given elsewhere. 

To apply our above results to the solar spin-down problem, we use the following 
rough geometrical correspondence: the top and bottom of the cylinder (2 = f H )  
correspond to the north and south hemispheres of the lower boundary of the 
convection zone. The cylinder side wall corresponds to the equatorial plane, and 
the plane 2 = 0 in the cylinder corresponds to the centre of the sun. The solar 
spin-down is caused by the continuous slowing down of the convection zone by 
the solar wind torque, and we may regard this as a succession of infinitesimal 
impulses. We use the present solution to study the penetration of each impulse, 
and we limit attention to the azimuthal velocity on the side wall (corresponding 
to the solar equatorial plane). Since the stratification is strong, we may use the 
formula (1 04). The quantity t" in (1 04) may be expressed in terms of the dimen- 
sional time .f as follows: 

Here t" is the time elapsed since the impulse at the boundary. For our present 
purposes, .f is the age of the sun (t = 5 x log years) and h = 0.86R0 = 6 x l0lOcm 
is the inner radius of the convection zone. The quantities K and N vary with 
position, and we have arbitrarily evaluated them at 0.7R, in Weymann's im- 
proved solar model, as tabulated by Schwarzschild (1958). The numbers are 
K = 3.5 x 107cm2/sec, N = 1.5 x 10-3sec-1. Finally, there is the choice of Q. 
Dicke (1970) has suggested a value of Q, = 5-74 x 10-5sec-l for the core angular 
velocity, whereas the average surface value is Qs = 2.87 x 10-6sec-1. We take 
these two values as extremes in making our qualitative estimates. For Q = Qc, 

we get 8 = 7.5 which implies qo/w = 1 throughout. Thus any impulses applied to 
the rapidly rotating sun will penetrate the entire core. As spin-down proceeds, 
however, Sl becomes smaller, and the process becomes less efficient. For the slow 
extreme, 52 = Q,, we get t" = 0.019, and the corresponding qo/w is shown in 
figure 3 (for I' = 03 and t" = 0.02). It is clear that impulses applied to the slowly 
rotating sun do not penetrate the core during the solar lifetime. I n  fact, for 
t" = 0.02, the amplitude of polo has dropped to 0.1 for $j = 0.7, corresponding to 
a position 0.6R0 in the sun. These results suggest that the angular velocity in the 
interior of the sun may be non-uniform. On the basis of our linear calculations, 
we cannot say whether non-uniformities as large as those required by Dicke are 
possible. Quantitative conclusions must await the analysis of the non-linear spin- 
down process in a sphere, for a compressible fluid of very small Prandtl number. 
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Appendix A. Boundary-layer analysis 
We give a brief summary of the boundary-layer analysis which leads to the 

boundary conditions (30) and (31) on the interior flow. 
The basic equations are (8)-(10) with a = 8 and the boundary conditions are 

(14)-( 17). A scaling analysis gives the following results: there are horizontal 
layers of thickness E4, and vertical layers of thickness E i  and EQ. These results 
also follow directly from the work of Barcilon & Pedlosky (1967b). 

The E )  horizontal layer turns out to be an ordinary Ekman layer in which the 
corrections to qe and $ are O(1) while the first non-zero correction to T is O(E). 
Since the analysis is essentially the same as the well-known ordinary Ekman layer 
analysis, we omit the details. The final results are the following conditions on the 
interior flow : 

T2@++Qe = wr a t  2 = + H ,  (A 1) 

and T = O  at Z = k H .  (A 2) 

The principal difference between this case and the case P = O(1) is that in the 
present case, there is no thermal boundary layer -the thermal condition is 
imposed directly on the interior flow. 

We consider the side-wall layers in somewhat more detail. The Ea layer is a 
merging of the shear layer and the hydrostatic layer discussed by Barcilon & 
Pedlosky (1967b). A detailed analysis shows that in this layer the corrections to 
qe and @ are O( l), while the correction to T is O(E'f). The other side-wall layer, 
with thickness EQ, is the buoyancy layer discussed by Barcilon & Pedlosky 
(1967 b ) .  In  this layer, the correction to @ is O( l), the correction to 90 is O(Et)  and 
the correction to T is O(E8). 

In  the quantitative analysis of the side-wall layers, we use two stretched radial 
co-ordinates 

Near the side wall, the solution has the form 

(A 3) CL = ( l - r ) / E i ,  p = ( l - r ) /EZ .  

@ = F+, 2, t )  + gc., 2, $1 +&A 2, t ) ,  

qe = q('(r, 2, $1 +q(a, 2, t )  + E+?(p, 2, t ) ,  

T = TQ(r, 2, t )  + E ~ ? ( c L ,  2, t )  + E#i?(p, 2, t ) .  

(A 4) 

(A 5 )  

(A 6) and 

The expressions (A4)-(A6) contain only the lowest-order terms of each type, 
which is sufficient for our purposes here. The boundary-layer corrections are 
supposed to be exponentially small outside of their boundary layers. 
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We consider now the equations obtained by substituting (A 4)-(A 6) into the 
full equations. The functions yXz), q(I )  and T(I) satisfy the interior equations 
(27)-( 29). The E* layer equations are 

and a T ' / a d  = daplaa. (A 9) 

The EB layer equations are af'lap = - a4$/ap4, (A 10) 

azy^iapz = 2a$iaz,  (A 11) 

and a@japz = osSa$lap. (A 12) 

The boundary conditions at  a = p = 0 (r = 1) are obtained by substituting 
(A 4)-(A 6) into the exact boundary conditions (14)-( 17), with the following 
results: 

q o + q  = u, (A 13) 

$("+$+$ = 0, (A 14) 

a$pp = o (A 15) 

and !!'(I) = 0 (fixed temperature) (A 16a) 

or aT(nlar = @/aa + a$lap (insulated). (A 16b) 

Consider first the case of a fixed-temperature side wall. Then equation (A 16n) 
is a condition on the interior flow. As we have seen in $3 ,  the solution of the 
interior flow equations is unique when the conditions (A l ) ,  (A 2) and (A 16a) are 
imposed. We indicate briefly how the boundary-layer corrections can be com- 
puted. By combining (A 7)-(A 9), we get 

The initial condition for ij is ?(a, 2 , O )  = 0 (A 18) 

and the boundary condition follows from (A 13) 
- q(O,Z , t )  = u-q(I)(l ,Z,t) ,  

where q ( I )  is known since the interior solution is already determined. We also need 
end-point conditions. Since the Et layer is much thicker than the Ekman layer, 
conditions of the type (A 1) hold and, since 

we get 

- aF 2 ap 4 = (rS)-L. = --- 
aa usaz' 

4 aq - + - - + q = O  at Z = + H .  - usaz 
Then 
uniquely by (A20), and 

is determined uniquely by (A 17)-(A 19) and (A 21), $ is determined 

Consider now the E* layer corrections. From (A 10)-(A 12), one can show that 
is determined uniquely by (A7). 

a4$iap4+rs$ = 0. (A 22) 
49 F L M  49 



770 T .  Sakurai, A .  Clark and P. A .  Clark 

The boundary conditions on $ are (A 14) and (A 15) (@(I)  and $ are now known), 
and one can show that $ is determined uniquely. From the integral of (A lo), 

and @ is determined uniquely by (A 11). Thus the boundary-layer corrections can 
be calculated, and no further conditions are imposed on the interior flow. 

Consider now the case of an insulated side wall. We start with the thermal 
boundary condition (A 16b). From (A 20), we can express appa in terms of $, and 
from the integral of (A 12), we can express ap/a/3 in terms of $. The condition 
(A 16 b )  then becomes 

we get !P = - az$pp, (A231 

aT(n/ar = GS$ i- crS$. 
aT(n/ar = - uS$(I), 

(A 24) 

(A 25) Now we use (A 14) to get 

a condition on the interior flow. As shown in 8 3, the interior flow is determined 
uniquely by (A 25) and the conditions (A 1), (A 2). The subsequent calculation of 
the boundary-layer corrections is identical to the fixed-temperature case already 
described. 

Appendix B. General axisymmetric container 
We consider here a general axisymmetric container and an arbitrary time 

variation of the container angular velocity. The equations for the interior flow 
are still (27)-(29). The boundary conditions are obtained by a boundary-layer 
analysis of the full equations (8)-(10) (for a = 4). Since the analysis is similar to 
those in appendix A, we just quote the results. On a surface which is not vertical, 
the only possible boundary layer has thickness E4. In  this layer, the corrections 
to qe and @ are 0(1) (in fact, qe  and $ satisfy the usual Ekman layer equations), 
and the correction to T is O(E4). The conditions imposed on the interior flow are 

and 

or 

2( cos 8)  $ = I cos 81 t (qs - w),  

T = 0 (fixed temperature) 

n.  VT -t- crX(sin 8) $ = 0 (insulated), 

where 0 is the angle from the z axis to the exterior wall normal n. These equations 
are also correct in the limiting cases of a horizontal wall (0 = 0 or n) or a vertical 
wall (0 = +n). We may contrast these results with those of Hsueh (1969) for the 
case P = O(1). He found that the buoyancy force alters the structure of the 
Ekman layer unless 1/91 < E-h. In  our case, the buoyancy force is unimportant in 
the Ekman layer. 

The energy-dissipation integral (33) may be generalized for either of the 
boundary conditions (i) or (ii), or for the more general case where (i) is satisfied 
on part of the surface and (ii) on the remainder: 

( B ~ T Z  + - ur)z} d v 
= - /I/ (grad T ) 2  d P - / Is  Sv(qo - ~ r ) ~ 1  cos 614 ds 

V 
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where V is the volume bounded by the container surface S and w is the container 
angular velocity, which may now depend on t .  The uniqueness of the solution is 
established by applying (B 3) tothe difference of any two solutions. This difference 
satisfies zero initial conditions, and the equations and boundary conditions with 
w = 0, so that uniqueness follows directly from (B 3). We also see that for any 
w ( t )  such that w -+ w, (a constant), as t -+ co, the solution necessarily tends to a 
rigid-body rotation qo = wor as t -+ 00. Since the quantities in (B 3) are of order 
one, the time lag between the interior and boundary angular velocities is of 
order one. 

Appendix C. Expansions in Bessel functions 
In  Q 4, we used four different expansions in Bessel functions. We summarize 

here the relevant properties of these expansions. In  all four cases, the set of 
functions can be generated by a Sturm-Liouville problem involving Bessel’s 

withp being zero or one. In  each case, the relevant interval is 0 < r < 1, and the 
condition of regularity at r = 0 is imposed. The four problems differ in the choice 
of p and the bundary condition at r = 1. In  each case the functions q5, are 
orthogonal with respect to r and complete on 0 =$ r 6 1. The expansion of an 

and 

We now consider the four cases. The results stated below are easily proved with 

(i) For p = 0 and the boundary condition q5( 1) = 0, we get 4, = J,(w,r) with 
the aid of formulas from Watson (1958) and by integration by parts. 

A, = w: where w, is the nth positive root of J,. The normalization is 

N, = *J2,(wn). iC 5 )  

If G(r )  is well-behaved and if G( 1) = 0, then both G’ and (rG’)‘ may be calculated 
by differentiating (C 2) termwise. 

(ii) For p = 1 and the boundary condition (rq5)’ = 0 at r = 1, we get 

q5, = J1(wnr) and A, = w:, 

where 0, is again the nth positive root of J,. The normalization is the same as 
(C5). The series for any well-behaved G may be differentiated termwise to 
calculate (rG)’. 

(iii) For p = 0 and the boundary condition 4’ = 0 at r = 1, we get q5, = 1, 
A, = 0 and 4, = J,(y,r) with An = y:, where yn is the nth positive root of J1. 
The normalization is 

(C 6 )  Nn = QJt(Yn)* 
49-2 
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The series for any well-behaved G may be differentiated termwise to calculate 
dGldr. 

(iv) For p = 1 and the boundary condition 4 = 0 at r = 1 we get 4, = Jl(y,r) 
with A, = y:, where 7,  is the nth positive root of J1. The normalization is the 
same as (C 6). If G( 1)  = 0, then (rG)’may be calculated by termwise differentiation 
of the series for G. 

By way of example, we prove the last result stated on termwise differentiation. 

We have m 

G = C b J l ( y , r )  (C 7 )  
n = l  N, 

with 

and N, given by (C 6). We wish to show that 

I d  m 

r dr n=l N, 
H = --(rG) = C m J o ( y , r ) .  

We expand H in a series of type (iii) : 

where h - H ( r )  r d r  = [rG]; = 0, 
O - IO1 

(C 12) 

and where N, is still given by (C 6).  An integration by parts in (C 12) leads to the 
desired result : 

d 
h, = [rGJo(Y,r)l: -so’ G Jo(y,r) r dr 

(C 13) 
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